方人研究证明, 使用终端滤器, 使二10um的微粒减少30~10倍, ≥25um的可全部截留。还有实验表明四可使输液中微粒减少65.6%,甚至有减少95.4%。因此"终端滤器"是今后减少输液的微粒污染的发展方

lii]。

参考文献

- [1] 张汉忠. 中国医院药学杂志,1989,9(8):344
- [2] 邹正年. 中国匹药院学杂志,1987,7(9):411

体外溶出度的位置参数τ值求算

制度图 海南门一层约学部(武汉 430060) 李·荣凌 尹武华

溶出度是指药物或胶囊等在规定介质中的溶出速度和程度,其曲线呈"弓"形,通过成布尔分布曲线可以描述体外溶出度试验,提取所需参数。位置参数τ在威布尔分布模型中规定可正可负或为零,其意义是或布尔函数与T轴的交点,在实际试验中0≤τ<11,它代表药物在介质中释放等过程的滞后时间。由于计算麻烦,因此在实验数据处理时往往令τ=0^[1,2,8],这样虽数据处理简单丁,但其结果有时偏差很大。借助计算机,利用foxbase+编程,就容易解决此问题,并且信果准确,使用方便。

一、成布尔分布模型[1]

$$F(t) = 1 - e^{-(t + \tau_1)^2} \qquad t = \tau \qquad (1)$$

$$F(t) = 0 \qquad t \le \tau$$

将(1)式变形得:

$$\ln \ln(1/(1-F(t))) = m \cdot \ln(t-\tau) -$$

$$Lnt_0$$
 (2)

其中: τ : 位置参 章, $0 \le \tau \le t$ m: 形 状参数, 表示曲线形状特征 t_0 : 尺度参数 F(t). 在t 时累积溶出百分比

以方程(2)式河知,求加是关键。最重要的参数,但加值与位置参数τ的取值有密 河关系,因此τ值估算的精确性带来加等 公额的准确性。

二、下值的估算

从(2) 式可知 给定一个 τ 值(0 $\leq \tau < t1$) 即可求得直线回归方程。

$$y = m \cdot x - \ln t_0 \tag{3}$$

由(3)式可知,相关系数

$$R = \frac{\sum_{x} xy - \sum_{x} x \sum_{y} y/n}{\sum_{x} (\sum_{x} x^{2} - (\sum_{x} x)^{2}/n) (\sum_{y} y^{2} - (\sum_{y} y)^{2}/n}$$
(4)

显然从(4)可知相关系数R是 τ 的函数,记为 $R(\tau)$ 。

因为 $0 \le \tau \le t < t_1$ (令 $t = t_1 - 0.01$),所以 $R(\tau)$ 在 $0 \sim t$ 区间内存在一个 τ 值,使得 $R(\tau)$ 最大,此点即为所求的位置参数,再通过(3)式求得 m,t_0 等参数。

三、下值的估算微机处理

由于 $R = R(\tau)$ 求极大值计 算相当复杂, 有效的方 法就是试 点法,在 0-t 范围 内进 行 R 值比较,寻求 较大的 R 值,其 τ 值精 度为 0.01。

四、应用实例及比较

1. 批号 780802 消炎痛片在不同时间的溶出度^[1]

序号	T(min)	F(t)(%)	$\ln\ln(1/1-f(t))$	拟合 $F(t)$ 1%	担合F(t)2(%)
1	2	50.68	-0.34695	50.83	54,42
2	4	69.90	0.18286	68.51	65.84
3	6	75.24	0.33357	74.69	72.46
4	8	77.39	0.39661	78.35	76.96
5	10	7 9. 32	0.45489	80.89	80.28
6	15	83.51	0.5891 3	84.95	85.76
7	20	89.38	0.80756	87.46	89.13

共中: F(t)1 5τ -1.54.R = 0.9916 F(t)2 为 τ = 0.R = 0.9763

不同处理方法求算的参数比较(n=7)

参数	威布尔概念率纸	成布尔函数	威布尔丽教
	(作图法[1])	$(\tau = 0)[3]$	$(\tau = 1.54)$
T 50	1.95	1.31	1.96
Td	3.80	3,13	3.04
m	0.65	0.42	0.29

各参数比较(n=7)

参数	文献值	实验值1	写现价2
τ(min)	0	Θ	3.69
R		0.9838	0.9986
T50(min)	10.32	10.32	8.98
Td(min)	14.85	14.86	12.78
in	1.0059	1.0059	0.6756

三、讨论及说明

1. R=R(r) 关系式 按罗尔定理^[6]推算

$$\coprod \sum ((y-y)/(x-\tau)) = 0$$
 (5)

从(5)式一定找到 R_{max} ,但求(5)式方程 的解相当复杂,只能用试点法,因此通过 R关系式利用试点法求 τ 是可行意。

- 2. 从两个例题比较看; τ 值不同, m值 相差 甚大, 其 T50, Td 等参 数 也有 较 大的 差异, 因此建议在体外固体制剂的溶出度研 究数据处理时应考虑 τ 值的估算。
- 3. 将实验值,拟合值(r=0)、拟合值(r = 0)两两进行成对 T 检验,均无显著性差异(P>0.05),这说明实验值测定韵准确性对m值影响较大。

参考文献

- [1] 唐桂美等. 药学通报, 1986, 21(12): 716
- [2] 董而博等。中国医药工业杂志,1990,21(11):508
- [3] 李全忠,中国医院药学杂志,1991.11(1):30
- [4] 吴念朱,顾学长主编, 药剂学, 第二版, 北京: 人民 卫生出职社, 1987, 425
 - [5] 龚文贤等,中国医院药学杂志,1991.11(3):99
- [6] 黄玉宏主编、高等数学(上型), 北京人民卫生出型 社,1987,83

阿昔洛韦霜的研制和临床应用

上海上海医院药局(上海 200433) 王永红 郑晓梅

阿昔洛韦(无环鸟苷)是目前临床上广泛 应用的抗病毒新药,市售主要剂型有:口服 片剂、注射用粉针剂、滴眼液、眼膏和外用 育霜等。由于外用膏霜剂供货较少, 且价格昂贵,所以我院普通制剂室自行研制成阿 告洛韦霜供本院临床使用,疗效明显。现将