FDP可減少红细胞的僵硬度,增加细胞内的ATP产生,维持红细胞正常 DPG浓度,有利于对抗溶血的能力和红细胞的释氧作用,故FDP可有效阻止体外循环对红细胞的损伤,并可用于多次输血的患者。一般每天给药10~20g,连用3~5天。

6. 全静脉营养中的应用

重危病人如复合外伤、大面积烧伤等接受全静脉营养疗法(TPN)中、本品可改善氮平衡,使尿素氮和血糖正常化、减少外源性胰岛素的用量,增加细胞内DPG浓度,从而增加红细胞的释氧作用,有利于手术后全静脉营养病人的健康状态。通常每日用10~20g,3~7天为一疗程。

三、副作用及注意事项

本品偶见局部注射部位有一过性疼痛,可能与该药所含的果糖成分有关,控制滴速可避免减轻对血管壁刺激的发生。未见其他不良反应。

本品单次剂量100~250mg/Kg体重,静滴速度为5gFDP以5分至10分钟滴完。该药存在效应与剂量的依赖性,认为只有大量快速静滴.才能达到治疗高浓度,否则效果不明显。但是给药太快可能对病情无益,尤其是大多数中老年病人。本品宜单独使用,勿溶入其他药物,尤其不可溶入碱性液、钙盐等。禁用于对点品过敏及高磷酸症、高磷血症、肾功能衰竭患者。肌酐清除率低于50%者应监测血磷。

FDP作为一种紧急抢救药物,可建议用于心肌梗塞、心肌缺血发作、休克及外科危病中。此外对严重心力衰竭、肝脏疾病及肾缺血疾病等也可作为联合用药中的一种有益药物。但因本品价格高,且仅是辅助治疗药,根据我国目前卫生条件,建议多用在紧急状态下,不宜当补药滥用。

(参考文献34篇略)

围绕急性心肌梗塞溶栓治疗的临床争论

Kline EM (美国密执安大学医学中心临床研究员) 陈 健译 张紫洞校

摘要:由于溶栓治疗已经成为急性心肌梗塞病人的首选疗法,因此过去十年里急性心肌梗塞的治疗也已发生了极大的变化。虽然许多问题已经解决,但仍有几点悬而未决。本文讨论溶栓药对梗塞血管的开放和降低死亡率的优越性,也论及胸痛持续6小时以上病人,老年病人和下壁心肌梗塞病人的溶栓作用。

表 1

在过去十年里,尤其是溶栓治疗选用急 性心肌梗塞 (AMI) 病人以来, AMI治疗 发生了很大变化。溶栓治疗的发展最早始于 1912年, 当时Herrick首先推论出急性血栓 阻塞是后来描述为AMI临床综合征的原 因。 然而Dewood等在1980年发表的具有代表性 文章中才证实了这种临床现象。他们的研究 结果引起了对AMI溶栓治疗的极大关注,并 且以死亡率、左室功能和梗塞有关动脉畅通 为观测指标的多次临床试验使它达到顶峰。 虽然有关AMI应用溶栓疗法的许多 问 题 得 以解决,但仍有几个问题处于争论之中。这 些临床争论包括后期症状即胸痛 6~24小时 内的病人、老年人和下壁梗塞病人的溶栓作 用。另外何种溶栓剂或何种复合溶栓剂对梗 塞血管畅通和减少死亡率更有优势? 下面的 讨论将举出这些争论点的最近临床发现。

溶栓剂的比较

当今许多溶栓剂在研制之中,各自都有 其优缺点。现只根据它们的发展或某"代" 药叙述如下(表1),第一代药有链激酶和尿 激酶。

三代溶栓药

CHEST COLUMN TO THE STATE OF TH	The state of the s
第一代	链激酶
	尿激酶
第二代	TPA
	APSAC
	前尿激酶 (SCU-PA)
第三代	增效复合物 (如TPA+SCU-PA)
	混杂体
	嵌合物
	结合SCU - PA、TPA的纤维蛋白元
	抗体轭合物

链激酶是一种非酶性细菌蛋白, 首次由 Tillet和Garner在1933年发现。它通过与纤 溶酶元结合形成一种激活复合物, 激活体内 纤溶系统从而将纤溶酶元转变成纤溶酶。它 对纤维蛋白是非选择性的, 所以用药时引起 全身性溶解状态。链激酶还可以诱导一种抗 原反应, 因为它是一种细菌蛋白, 半衰期为 16分钟。

自70年代后期,已在许多临床试验中对链激酶进行了广泛地研究。报道的有效率各有不同;汇集的资料表明静脉用药的有效率是50%,而经冠脉内用药可达75%。链激酶降低死亡率是显著的,并在几项大范围国际性试验中已得到很好的证实。

尿激酶是另一第一代溶栓剂,是在四十年代从人尿中分离出的双链多肽。尿激酶直接激活纤溶酶元,因其纤维蛋白的非选择性也造成全身溶解状态。虽然半衰期也同是14~16分钟,但其优于链激酶的是无抗原性和抗体形成。有关尿激酶的临床试验还不及链激酶那样普遍,现有资料表明其畅通率为60%,其死亡率的试验还未见报道。

第二代溶栓剂有组织纤溶酶元 激 活 物 (TPA)、甲氧苯酰纤溶酶元链激酶激 活复 合物 (APSAC) 和前尿激酶或单链尿激酶 纤溶酶元激活物 (SCUPA) 。 自 198 4年 TPA首次用于一例AMI病人后已进行了广泛研究,它优于第一代溶栓剂的几点是纤维蛋白的特异性、短半衰期(3~5分)和无抗原性。它是由血管内皮细胞与纤溶酶元纤维蛋白复合物高亲合力产生的丝氨 酸 蛋 白酶。多次畅通与再灌注实验集中 表 明,在1400例以上病例中其畅通率为76%。 TPA产生的迅速再灌注,使它更优于其它代的溶栓剂。

英国一斯堪的那维亚早期血栓 溶 解 研究(ASSET, Anglo Scandinavian Study of Early Thrombolysis) 是迄今 唯 一的安慰剂与TPA对照的死亡率试 验。5000多

例患者随机分为TPA组或安慰剂织, 结果证实治疗组死亡率减少26%。

另一个第二代溶栓剂——APSAC是链 激酶的衍生物,在几方面优于第一代同类物。 APSAC的激活是通过控制方式脱乙酰而产 生的,因此得以快速注射给药。另外,它的半 衰期明显增长达90~150分,结果引起更有效 的凝块溶解,但相反也可广泛发生纤维蛋白 元溶解。APSAC具有与链激酶相同的抗 原 性。

几项再灌注和畅通的研究证 明APSAC 使梗塞动脉 开 放 率 为 56~77 %。一些 APSAC与安慰剂对比的死亡率试验 表明在 减少死亡率方面明显有益。AIMS实验组对 APSAC介入性死亡率研究表明了30天和1年 的患者死亡率减少47%。

最后一个二代溶栓剂,SCU一PA是类似TPA的对纤维蛋白有选择性的尿 潋 酶前 ´体,它也是一种在纤维蛋白存在下能转化成尿激酶而天然产生的酶。它象TPA一 样 呈短半衰期(6分),并从肝脏清除。有关评价它再灌注或畅通的临床资料是有限的。心肌梗塞中前尿激酶的试验在大约400病例中比较了SCU—PA和链激酶的作用, 证 明SCU—PA更快地使梗塞血管再通,但 24小时期间内两者的畅通率无明显差 异。 应用SCU—PA有关死亡率的资料还未见到。

第三代溶栓剂是一些诸如TPA与 SCU—PA的增效复合物、混杂物、嵌合物 以及SCU—PA和TPA的纤维蛋白——抗体 轭合物。联合用药和发生突变两者的预期结 果是产生—种分子,它具有高纤维蛋白亲合 力、长半衰期和改善的纤维蛋白特异性;尽可 能达到最安全的界限。但尚未获得有关突变 体、混杂体或抗体共轭分子的临床材料。

溶栓治疗对减少死亡率的影响

如今多方面临床试验中得出的溶栓治疗 减少AMI死亡率的证据呈压倒之势。看来不 论使用何种溶栓剂都利于减少死亡率。不幸 的是在每个试验中考虑单种溶栓药的效果,试验之间的研究设计有明显差别,使不同溶栓剂对减少死亡率评价的相互比较难以进行。试验间的变化因素对包括有或无完整的心电图、症状发生至开始用药的时间和是否使用阿司匹林和/或肝素。现将5个安慰剂对照的静脉溶栓死亡率试验列于表2中,以展示试验组间变化因素差异。

两个大样本的直接比较溶栓剂的死亡率

观察试验正在进行。意大利的链激酶对心肌 梗塞研究小组的试验将12000病人随机 分 为 TPA组或链激酶组。再第二次随机 分 为皮 下注射肝素组或无肝素组。另外国际肌塞抢 救研究组将30000病人随机分为APS A C、 TPA或链激酶组。此研究也再第二次 随 机 分为肝素组及无肝素组。此次大量试验的结果应该能证明在减少死亡率方面哪一种溶栓 剂更优于另一种。

表 2 静脉溶检药安慰剂对照死亡率试验

试验缩略词	药剂	心电图	时间窗 (hr)	阿司匹林		病例数	治疗 (%)	对照 (%)
GISSI	SK	+	12	_	_	11806	10.7	13
JSIS-2	SK	~	24	+	-	17187	$9 \cdot 2$	12
ASSET	SPA	-	5	-	+	5011	7 • 2	9.8
AIMS	APSA	C +	6	_	-	1004	6.3	12.1
ISAM	SK	+	6	т	т	1741	5.1	6.5

延迟溶栓或后期再灌注

实验的和临床的研究均已表明心肌存活 和心室功能是对时间依赖的。 Reimer 和 Jenning在动物模型上证实了心肌坏死 过程 的发生经历几个小时。坏死开始于心肌内髓 (inner core), 并在4~6小时之间逐渐 由心内膜进展到心外膜,导致穿壁性梗塞。 因此确定6小时为时间界限,溶栓必须在胸 痛发作后这个时间内进行,才能达到最大的 挽救心肌作用。GISSI-1的试验最先得出 的结论是,症状发生6小时后溶栓对死亡率 无明显减少。GISSI-1还观察了胸痛12小 时以上的病人。当该资料进一步仔细分析 后,发现胸痛6~9小时后溶栓治疗者死亡 率减少11%。这一结果并可与症状发生1~. 3小时的死亡率减少14%和胸痛3~6小时 的死亡率减少17%相比拟。

更令人注意的是对ISIS—2 试验参加的病人再分析显示出有关延迟溶栓这一有争论的结果。在这个链激酶和阿司匹林的安慰剂对照的试验中,参加的病人是胸痛 达 24 小

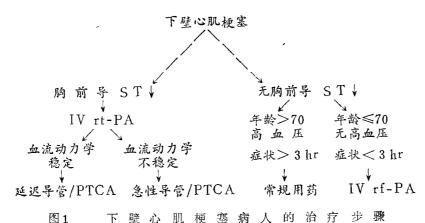
时。那些"后期的"即症状发生后 5 ~24小时患者,使用链激酶治疗有减少死亡率的趋势。

现有的几个理论也许可解释这种后期灌 注和有益于生存的现象。间歇性血栓溶解或 表现良好的侧支循环可以使溶栓时限延长。 也有证据表明 "开放动脉" 可防止梗塞扩大 和心室扩张,进而导致较高的喷血比数。动 脉开放也可增加室颤减值。这种作用会有利 于减少猝死的危险,如果发生第二次缺血还 可考虑到侧支循环血流。

有关后期再灌注的潜在益处现有3个试验进行研究,全部三项试验均有安慰剂对照。一个是链激酶的,另两个是TPA的。这些研究将集中讨论死亡率、梗塞血管开放和左心室容量以及全部和局部室壁收缩功能。在这些试验结果公布之前,溶栓治疗不应该常规地用于胸痛4~6小时以上的患者。然而,不久的将来得到的资料将改变目前所采用的时间界限,即在此时间内溶栓治病应该开始。

下壁心肌梗塞

下壁梗塞病人是否应进行溶栓,并使此 类病人的严重并发病症危险相对降低尚有很 大分歧意见。然而近期临床随机试验资料支 持下壁梗塞病人的溶栓治疗。 AIMS和ISIS—2 两者试验均表明溶栓 明显有益于下壁梗塞病人的生存(表3)。 另外, GISSI—1 认为即使无统计 学 显 著性, 但有降低死亡率的趋势。


表 3	下	駐	123	肌	梗	塞	约	溶	栓	治	疗

An 4-1	 药 剂	死 亡 率 (%)					
试 验	हुन जी	治疗	对 照				
AIMS	APSA	3.4	7.8				
ISIS-2	SK	6.8	10.2				

为评价左心室功能而设计的几项试验表明下壁梗塞病人的喷射比数确实显著得到改善。左心室功能保护依赖许多可变因素包括治疗时间和冠脉畅通率。考虑及此,喷射比数点的增加通常较前壁梗塞者增加的少,但仍是有意义的。

临床试验数据支持溶栓治疗最终对下壁 梗塞病人的死亡率减少和心肌功能改善是有 益的。但有冠脉的畅通率和在测定下壁梗塞 的溶栓效果时却成为混淆的可变因素。看来 右冠的溶栓治疗与左前降支动脉相反是有相 当阻力的,这种现象的理由还不太清楚。另 外在ISAM和TAM—1 试验中都证实了, 尽管使用3种溶栓剂,而右冠动脉再阻塞似 乎比左前降支动脉再阻塞更易出现。

最近来自GISSI—1 试验的争议性资料认为,能预计病人有效的是梗塞的大小而不是梗塞的部位。因为下壁梗塞伴有心电图 V₁—4 导联S—T段降低的病人与前壁梗塞病人的预后相似,所以这些病人尤其应该积极地运用溶栓治疗。根据这些最近试验的结果,对急性下壁梗塞病人设计了一份治疗步骤(图1)。

老年病人溶栓治疗

围绕溶栓治疗争论最大的问题之一是老 年病人是否适用这种疗法。一般认为在用传 统法治疗心肌梗塞之后,老年病人有很高的 并发率和高的死亡率。另外这些病人溶栓治疗后,大出血的出现率是很高的。为此,大多数溶栓试验已经专门将75岁做为接受治疗的上限。对一些大样本包括老年病人采用各

种溶栓剂的心肌梗塞研究进一步分析,已经证实溶栓则显有益于老年人群的生存。表4可看出四项重要试验:GISSI、ISIS—2、

AIMS和ASSET中60岁以上患者死亡率的降低。

表 4	老	华	捬	人	的	溶	栓	治	疗:	死	亡	率	减	少	情	况
-----	---	---	---	---	---	---	---	---	----	---	---	---	---	---	---	---

A	****	a Ne Ziol Nelle	čir ulak	死亡率(%)			
试 验	药一剂	病例数	年 龄	治疗组	对照组		
GISSI	SK	2886	65~74	16.6	18.1		
		121 5	≫ 75	28.9	33.1		
ISIS-2	SK	6056	60~69	10.6	14.4		
		3611	≥ 70	18.2	21.6		
	SK + ASA	3024	60~69	9.1	16.1		
		1706	≥ 70	15.8	23.8		
AIMS	APSAC	176	65~70	12.2	30.2		
ASSET	ΥPA	1679	66~75	10.8	16.4		

虽然清楚地表明对老年病人生存有益, 但这一发现并不意味着在此年龄范围内的每 个病人都应该接受溶栓治疗。在决定治疗策 略时,临床上更合理的是评价老年人功能的 和生理的状态,而不是机械地计算年龄的增 长。

为了确定这组病人的生存益处,几个随 机以安慰剂对照的研究正在进行,其中包括 老年人群中用TPA溶栓试验。

护理意义

正在进行的临床研究结果不断地以快速的步伐改变着心脏病学的实践。迫切的是护理业务工作应该反映出医学专业中护理变化的标准。这种变化的需求与AMI病人的治疗是尤为相关的。十年前的溶栓治疗曾是一种新的和实验性治疗,而今天溶栓治疗却成为了AMI病人的护理标准。甚至AMI的定义可以修改成包括那些症状持续6小时以上的病人。

在AMI医疗机构中溶栓治疗的 运 用减少死亡率是无可争辩的。在美国每个急诊科室和危重病人监护病房必须有准备去正确地

诊断、治疗和处理任何做溶栓治疗的 AMI 病人。每所医院中必须规定有标准方案,这 种方案要求包括有确保迅速确定和实施的溶 栓治疗实际计划性步骤。每个急诊室和监护 病室应该将12导联心电图诊断做为标准。监 护病房的方向应该确定为溶栓治疗所引起的 出血性合并症的防止、确认和处理。在以后 几年中,随着治疗适应症的不断扩大,尤其 必要的是建立溶栓治疗护理标准。现在对不 稳定心胶痛、心源性休克、肺栓塞、左室血 **栓、**外周动脉阻塞、人工瓣膜血栓、深部静 脉血栓和脑栓塞的溶栓治疗正在研究中。因 此今后几年里,溶栓病人的护理将要继续面 临更大的挑战。由于更多的老年人 接 受 治 疗, 谨慎筛选和认真评价 及介入治疗, 尤 其 是 避 免 损 害性操作将是 极为 重 要 的。尽管在AMI中围绕溶栓治疗尚 有 一 些 未解决的临床争论,但其减少死亡率的优势 及其临床益处的不断证实, 将使我们确信溶 栓治疗至今是值得存在的。

[Heart and Lung 《心和肺》, 1990; 19(6): 596~601英文]