
簠

五、药代动力学参数 (K、 $t_1/2$)的 计

根据表 3 数据以 $\lg \frac{\Delta x}{\Delta t}$ —tc作图可得到一条二项指数型曲线。附图。

根据测定结果计算得到的主要动力学参数(K、 $t_1/2$)见表 4。计算方法如下: K是由 $lg\frac{\Delta x}{\Delta t}$ 一tc图的后段直线回归求出的斜率所得, $t_1/2$ 由K换算。

六、讨 论

- 1. 整个操作中均需用重蒸馏水,以防 荧光杂质的干扰。
- 2. Kohn原法所用尿液0.01ml,本法 采用0.1ml,乙酸乙酯用量原法3.00ml,本法 改为5.00ml。这是仪器灵敏度及样品 池 尺 寸不同的缘故。
 - 3. 糖衣中黄色素影响测定,故应用无

表 4 5 名受试者口服单剂四环素后药 动学参数

文 试 者	K (h-1)	t 1/2 (h)
A	0.099	7.0
В	0.064	10.9
C	0.076	9.1
D	0 • 05 1.	13.7
Ė	0.087	7.9
\overline{X}	0.075	9.7
± SD	0.019	2.7

色素糖衣片或去糖衣片。

4. 本文报道的人体尿药法测得的四环素平均半衰期为9.7,与文献《新编药物学》(第12版)一书中所记载的9.0及《TDM的理论与实践(陈刚主编)》一书中所记载的9.9±1.5相接近。

△本室董秀、刘自义、刁云华三**同**志参 加部分工作。

参考文献

- 1. 南京药学院药物分析教研室主编. 体内 药 物 分析. 第一版. 北京: 人民 卫 生 出 版 社, 1984: 267~271
- 2. 居锡德等主编. 生物药剂学, 第一版. 江苏科学技术出版社, 1981; 231~248
- 3. 陈刚主编. TDM的理论与实践. 南京: 晨 光 实业公司出版, 1985: 37~38
- 4. 奚念朱等。药学诵报 1985; 20 (4); 216

高效液相色谱法同时测定苯巴比妥、苯妥英和卡马西平的血清浓度

解放军202医院药剂科 嵇 扬 李国秀 高小平 王玉鹏* 蒋 东**

提要: 苯巴比妥(PB)苯妥英(PHT)和卡马西平(CBZ)是临床常用 的 抗 癫痫药物。本文采用二步预处理; Shim—Pack CLC—TMS柱; 以非那西丁为 内标; 甲醇—水

[•]上海第二军医大学药学院89级实习生

^{••}天津第二医学院药学系89级实习生

关键词: 苯巴比妥 苯妥英 卡马西平 HPLC法 血清浓度监测

PB、PHT、CBZ是临床常用的抗癫痫 药物。由于它们的安全范围窄; 血药浓度个 体差异大,且疗效和毒副作用与之密 切相 关;长期用药、合并用药时呈现药酶诱导和 自身诱导,因而需要监测,同时测定这三种 药物的方法,国内尚无报道。国外有高效液 相色谱法和气一质联用二种方法。本文所报 告的方法加强了样品预处理,改进了流动相 组成,因而具有取样量少、检出灵敏、分析 成本低、利于延长色谱仪与色谱柱使用寿命 的特点。方法学的各项指标均显示,本法能 完全满足药代动力学研究和临床监 测 的 需 要。

材料与方法

一、仪器

日本岛津高效液相色 谱 仪LC—6A 系列,包括LC—6A型泵,SPD—6AV 紫 外检测器、CR—3A色谱数据处理机、Rheodyne7125型进样阀等。

二、试药

- 1. 标准品:苯巴比妥,苯妥英和非那西 丁药典品,沈阳克达制药厂提供,卡马西平 药典品,上海第一制药厂提供。
- 2. 试剂:甲醇、乙腈、氯仿和乙醚均为国产分析纯试剂,经重蒸馏后使用。重蒸馏水、沈阳康利药厂提供。 正常人血清:本院血库提供。

三、试液配制

1. 标准品贮备液: 室温下配制10

mg/ml苯巴比妥甲醇液、 1 mg/ml 苯 妥英 甲 醇 液, 1 mg/ml卡马西平甲醇液, 密封 于 4 ℃冰箱中可保存二个月以上。

- 2. 内标贮备液: 室温下配制20μg/ml 非那西丁甲醇液,密封于4℃冰箱中可保存 半年以上。
- 3. 含内标的乙腈液: 取内标 贮 备 液 140 μl。置于10 ml容量瓶中,加 乙 腈 至 刻 度。
- 4. 提取液: 氯仿和乙醚以2:1的体积比混合而成。
- 5. 磷酸盐缓冲液(pH=6.5): 按 《中国药典》85版附录配制。

四、样品预处理

100μl血清(空白、标准药物、病人血清)加入100μl含内标的乙腈液,混匀、离心(4000转/分)5分钟,取出上清液140μl加入缓冲液140μl。提取液2.0ml、振荡30秒,离心(4000转/分)5分钟,取出有机层1.80ml,于40℃恒温水浴中通氮气蒸干,取100μl流动相加入上述蒸干的试管中,20μl进样。

五、色谱条件

分析柱: Shim—Pack CLC—TMS (15cm×6 mm), 流动相: 甲醇/水 (47/53 v/V); 流速: 1ml/min; 检测波长: UV240nm; 满量程吸光度0.01AUFS; 柱温: 室温; 纸速: 0.3cm/min。

结 果

一、色谱行为

苯巴比妥、苯妥英、卡马西平和内标非 那西丁的保留时间分别为5.8min,8.4min, 9.4min,6.7min体内体外试验峰位一致, 且空白血清在5min后无干扰峰出现。

二、线性试验

1. 标准曲线绘制: 以各药有效血药浓度范围为依据,配制系列标准血清 I、Ⅱ、Ⅲ、Ⅳ(见表 1)

表1 标准血清中各药浓度 (µg/ml)

	标	准品	血清	系 列	
药物	I	I	II	VI	有效血浓范围
PB	10	20	40	60	15~40
PHT	7	10	20	40	10~20
CBZ	2	8	12	18	6 ~ 12

各取三管,按"四"法处理,进样后得各药及内标的峰面积数据,以各药与内标峰面积比As/Ais(均值)对各 药 血 清 浓 度(C)作图(见图1)、并进 行线性回归,得回归方程:

PB: As/Ais = 0.02502 + 0.03199C $\gamma = 0.9997$

PHT: As/Ais = -0.01077

+ 0.02508C $\gamma = 0.9998$

 $CBZ_{:}$ As/Ais = -0.04729 +

0.2251C $\gamma = 0.9992$

2. 最低检出浓度: 配制标准血清, 其

浓度为: PB2.5µg/ml, PHT5.0µg/ml, CBZ0.5µg/ml 按"四"法处理,进样后得各药及内标的峰面积,由标准曲线方程求得各药血药浓度和回收率,(见表2)

表2 回收率(µg/ml)

	PB	РНТ	CBZ
加 入 量 测 得 量 回 收 率 %	2.5	5	0.5
测 得 量	2.8	5.3	0.6
回收率%	112	1 0 6	120

3、线性范围:配制标准血清, 其浓度为 PB80μg/ml, PHT60μg/ml, CBZ 20μg/ml,按"四"法处理,进,样后得各药及内标的峰面积,由标准曲线方程求得各药血药浓度和回收率(见表3)

表3 线性范围

	РВ	РНТ	CBZ
加入量	80	60	20
测 得 量	78.7	58.6	19.5
回收率%	98.4	97.7	97.5

由表 2、表 3 可知,本法线性 范围 可达: PB2.5~80μg/ml PHT 5~60μg/ml CBZ0.5~20μg/ml。

三、回收率和精密度试验

一日内取Ⅰ、Ⅱ、Ⅲ、Ⅳ标准血清各三管,分别在五日内取Ⅰ、Ⅱ、Ⅲ、Ⅳ标准血清各一管,按标准曲线绘制所述方法处理并测定结果,结果见表 4、5。

表 4

精密度测定

Dage	Mean±SD(μg/ml)	CV%(n=3)	Mean±SD(μg/ml)	CV% (n = 5)
Drug within-day			day - to - day	
10.46±0.83	10.46±0.83	7.93	10.44+0.06	0.57
13.73	19.78 ± 0.39	1.97	19.24 ± 0.98	5.09
РВ	39.29 ± 0.24	0.61	38.96 ± 0.72	1.85
	60.47 <u>+</u> 0.31	0.51	57.95 ± 2.19	3.78

	7.32 ± 0.16	2.19	7.49 ± 0.23	3.07
DIIM	9.85±0.26	2.64	10.04 ± 0.50	4.98
PHT	19.71 ± 0.40	2.03	20.00 ± 0.54	2.5
	40.12±0.76	1.89	39.55 ± 2.06	5.21
	2.31±0.03	1.41	2.09±0.07	3.35
an-	7.94 ± 0.19	2.39	7.83 ± 0.17	2.17
CBZ	11.69 ± 0.32	2.74	11.97 ± 0.26	2.17
	16.23 ± 0.26	1.60	15.58±0.58	3.72

表5 血清药物回收率

Drug	Amt added (µg/m1)	recovery (n = 5) %
PB	10	106.5
	20	97.3
	40	97.7
	60	98.3
THq	7	106.1
	10	99.6
	20	99.4
	40	99.5
CBZ	2	105.0
	8	99.8
	12	98.9
	16	99.1

配制标准蒸馏水液、标准血清液,其浓度为 PB20μg/ml, PHT10μg/ml, CBZ 8μg/ml,接"四"法处理,进样后得各药及内标的峰面积数据,见表6

四、干扰试验

对服一种药物(PB或PHT或CBZ)病人血清进行的分析表明,色谱峰是单一的。 表明被分析药物之间,被分析药物与内标之间,被分析药物的代谢物与内标之间、一药的代谢物与他药之间不存在干扰。但由于没有药物代谢物的标准品,因而药物代谢物是否干扰原型药物尚无定论。体内内源性生物成分不干扰测定。

临床癫痫病人常合用的丙戊酸 钠 、 安 定、硝基安定、氯硝基安定及异丙嗪、氯丙

表 6

绝对回收率测定结果

	РВ	РНТ	CBZ	内 标
峰面积(水 管)	96075	7112	181604	106229
峰面积(血 管)	69908	6514	173538	100318
峰面积(血/水)	72.76	91.59	95.56	94.44
回收量(血/水)	76.40	97.40	101.16	

嗪、利眠宁、佳乐定、 苯噻啶、 奋乃静等对测 定无干扰。

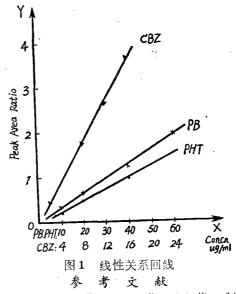
服用含有非那西丁的复方制剂如APC, 去痛片、撒利痛、优散痛、干扰测定。

讨论

一、血清样品的预处理: 参照 国 外 报 道 ⁽¹⁾,我们曾选择甲醇、丙酮、乙腈等 沉 淀剂,使用沉淀法预处理样品,结果是国产

丙酮、乙腈本底较高干扰测定,试蒸干沉淀后的上清液,以流动相再溶解后分析,但蒸干速度 慢 (40℃,血清/沉淀剂1/2)进样分析仍见干扰组分,甲醇沉淀效果差。我们也曾将仅用提取法与二步预处理样品相比较,发现后者有更高的提取率,且样品净化程度高,可以预计这将大大延长色谱柱使用寿命。本文探讨了血清pH值对回收率的影

响。初步观察表明:当pH=6.5时,内标和药物有较高的回收率;当pH<6时,苯巴比妥、苯妥英的回收率升高,卡马西平下降;当pH>7.4时,苯巴比妥,苯妥英回收率下降,卡马西平回收率稍有上升。结果与卓海通等 $^{(3)}$ 报道基本一致。因此,我们选择在pH=6.5的磷酸盐缓冲液中进行提取。


本文在采用乙腈沉淀和pH = 6.5的条件下,考察了常用的提取溶剂CH₂Cl₂,CHCl₃,乙醚、醋酸乙酯等的提取效果,确定了氯仿一乙醚(2:1)二元溶剂为提取液。从而兼顾了提高提取率,克服血清内源性组分干扰,减少乳化,便于操作、缩短蒸干时程等诸项要求、结果满意。

二、色谱条件选择

- 1.流动相:许多文献 (1-5) 报道都 采用乙腈和磷酸盐缓冲液 (pH3~8)作为流动相组分。我们认为:这种组成除分析成本高外,盐类的使用还对管路和柱的清洗提出了较高的要求,因而大大延长了非分析占机时间。经实验,我们采用 的 甲 醇 一 水(47/53 v/V)流动相既克服了上述缺点,又获得了理想的分析效果。
- 2. 色谱柱: Tjaded等 ⁽⁶⁾ 认为甲基硅烷键合相对巴比妥类药物的分离效 果 优 于 C₈或C₁₈柱。据此,我们考察了C₃、C₁₈、TMS对三种药物及内标的分离效果,以TMS、柱的分离效果和分析时间最为满意。
- 3. 检测波长: 国外报道的检测波长大都 在 195~210nm (12/14) ⁽¹⁾。 我 们 对 210、220、230、240、254nm几个波长进行 了考察,结果表明230nm以下处,基线不够

平稳,血清空白值较大;254nm处检出灵敏度较低。因而选择240nm做为检测波长。

三、样品稳定性考察表明:药物 血清 \mathbb{I} 、 \mathbb{I} 、 \mathbb{I} 、 \mathbb{I} 、 \mathbb{I} 在 -15 C保存24小时各药平均回收率分别是: PB99.63 \pm 4.12%, PHT 102.82 \pm 3.98%, CBZ 96.82 \pm 2.29%, 48 小时、72小时测定结果,回收率下降。因此取样后应置于 -15 C冰箱内,并于24小时内完成测定。

- 1. 于宝成: 国外药学(合成药、生化药、制剂分册) 1988; 5: 296
- 2. 吴莱文等: 中华医学检验杂志 1985; 8: 90
- 3. 卓海通等:南京军区药学专业委员会第一次会议论文摘要汇编 P7
- 4. Adam RF.et al. clin chem 1976; 22:25
- 5. Kabra PM.et al. clin chem 1977, 23: 1284
- 6. Tjaded UR et al. J chromatogr 1977; 143: 183

羟乙基淀粉及其注射液的分光光度测定法

总后卫生部药品仪器检验所 刘志邦

羟乙基淀粉属多糖类化合物,其注射液 有增加并维持血液胶体渗透压、增加血浆容 量、维持血压等作用。临床上用于治疗出血性休克、创伤性休克及烧伤休克等。原料药